Matrices totally positive relative to a tree
نویسندگان
چکیده
منابع مشابه
Ela Matrices Totally Positive Relative to a Tree∗
It is known that for a totally positive (TP) matrix, the eigenvalues are positive and distinct and the eigenvector associated with the smallest eigenvalue is totally nonzero and has an alternating sign pattern. Here, a certain weakening of the TP hypothesis is shown to yield a similar conclusion.
متن کاملImmanants of Totally Positive Matrices Are Nonnegative
If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should po...
متن کاملTotally Positive Density Matrices and Linear Preservers
The intersection between the set of totally nonnegative matrices, which are of interest in many areas of matrix theory and its applications, and the set of density matrices, which provide the mathematical description of quantum states, are investigated. The single qubit case is characterized, and several equivalent conditions for a quantum channel to preserve the set in that case are given. Hig...
متن کاملOn totally positive matrices and geometric incidences
Article history: Received 3 September 2013 Available online xxxx
متن کاملEla Zero Minors of Totally Positive Matrices
In this paper the structure of the zero minors of totally positive matrices is studied and applications are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2009
ISSN: 1081-3810
DOI: 10.13001/1081-3810.1306